GCE AS/A level

WJEC CBAC

0973/01

MATHEMATICS Cl Pure Mathematics

A.M. FRIDAY, 13 Jonuary 2012
$11 / 2$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.
Calculators are not allowed for this paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The points A, B, C, D have coordinates $(-5,14),(1,2),(5,4),(3,8)$ respectively.
(a) (i) Show that $A B$ and $C D$ are parallel.
(ii) Find the equation of $A B$.
(iii) The line L passes through the point D and is perpendicular to $A B$. Show that L has equation

$$
\begin{equation*}
x-2 y+13=0 . \tag{8}
\end{equation*}
$$

(b) The lines L and $A B$ intersect at the point E.
(i) Find the coordinates of E.
(ii) Calculate the length of $E F$, where F denotes the mid-point of $A B$.
2. Simplify
(a) $\frac{9+4 \sqrt{2}}{5+3 \sqrt{2}}$,
(b) $(\sqrt{8} \times \sqrt{10})+\frac{\sqrt{90}}{\sqrt{2}}-\frac{30}{\sqrt{5}}$.
3. The curve C has equation $y=2 x^{2}-8 x+13$. The point P, whose x-coordinate is 3 , lies on the curve C. Find the equation of the normal to C at P.
4. (a) Use the binomial theorem to expand $\left(x+\frac{3}{x}\right)^{4}$, simplifying each term of the expansion.
(b) The coefficient of x^{2} in the expansion of $(1+2 x)^{n}$ is 760 . Given that n is a positive integer, find the value of n.
5. (a) Express $3 x^{2}-6 x+5$ in the form $a(x+b)^{2}+c$, where a, b and c are constants whose values are to be found.
(b) Use your answer to part (a) to find the greatest value of

$$
\begin{equation*}
\frac{1}{3 x^{2}-6 x+11} . \tag{2}
\end{equation*}
$$

6. Given that the quadratic equation

$$
(k+6) x^{2}+4 x+(k+3)=0
$$

has no real roots, show that

$$
k^{2}+9 k+14>0
$$

Find the range of values of k satisfying this inequality.
7. (a) Given that $y=8 x^{2}-5 x-6$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ from first principles.
(b) Given that $y=\frac{a}{x}+10 \sqrt{x}$ and that $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ when $x=4$,
find the value of the constant a.
8. (a) When $a x^{3}-21 x-10$ is divided by $x-3$, the remainder is 35 .

Write down an equation satisfied by a and hence show that $a=4$.
(b) Factorise $4 x^{3}-21 x-10$.

TURN OVER

9. The diagram shows a sketch of the graph of $y=f(x)$. The graph has a maximum point at $(1,3)$ and intersects the x-axis at the points $(-2,0)$ and $(4,0)$.

(a) Sketch the graph of $y=f(2 x)$, indicating the coordinates of the stationary point and the coordinates of the points of intersection of the graph with the x-axis.
(b) (i) Sketch the graph of $y=f(x)-5$, indicating the coordinates of the stationary point.
(ii) Given that f is a quadratic function, use the graph you have drawn in part (i) to write down the number of real roots of the equation

$$
\begin{equation*}
f(x)-5=0 . \tag{3}
\end{equation*}
$$

10. The curve C has equation

$$
y=x^{3}-6 x^{2}+12 x-9
$$

(a) Show that C has only one stationary point. Find the coordinates of this point.
(b) Verify that this stationary point is a point of inflection.

